Semi-Supervised Learning for Classification of Protein Sequence Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Semi-supervised Sequence Learning

We present two approaches that use unlabeled data to improve sequence learning with recurrent networks. The first approach is to predict what comes next in a sequence, which is a conventional language model in natural language processing. The second approach is to use a sequence autoencoder, which reads the input sequence into a vector and predicts the input sequence again. These two algorithms...

متن کامل

Semi-supervised Learning for Classification of Polarimetric Sar-data

In the last decades Synthetic Aperture Radar (SAR) technology gained more and more importance in remote sensing. Although often more difficult to interpret than optical data, SAR data has certain advantages, like independence from daylight or less influence of weather conditions. Furthermore the data contain information, which cannot be provided by other remote sensing technologies. Today, many...

متن کامل

Semi-Supervised Learning for Multi-Component Data Classification

This paper presents a method for designing a semisupervised classifier for multi-component data such as web pages consisting of text and link information. The proposed method is based on a hybrid of generative and discriminative approaches to take advantage of both approaches. With our hybrid approach, for each component, we consider an individual generative model trained on labeled samples and...

متن کامل

Semi-supervised Multitask Learning for Sequence Labeling

We propose a sequence labeling framework with a secondary training objective, learning to predict surrounding words for every word in the dataset. This language modeling objective incentivises the system to learn general-purpose patterns of semantic and syntactic composition, which are also useful for improving accuracy on different sequence labeling tasks. The architecture was evaluated on a r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Programming

سال: 2008

ISSN: 1058-9244,1875-919X

DOI: 10.1155/2008/795010